An extension of Maclaurins inequality

نویسنده

  • Vladimir Nikiforov
چکیده

Let G be a graph of order n and clique number !: For every x = (x1; : : : ; xn) 2 Rn and 1 s !; set fs (G;x) = X fxi1 : : : xis : fi1; : : : ; isg is an s-clique of Gg ; and let s (G;x) = fs (G;x) ! s 1 : We show that if x 0; then 1 (G;x) 1=2 2 (G;x) 1=! ! (G;x) : This extends the inequality of Maclaurin (G = Kn) and generalizes the inequality of Motzkin and Straus. In addition, if x > 0; for every 1 s < ! we determine when 1=s s (G;x) = 1=(s+1) s+1 (G;x). Letting ks (G) be the number of s-cliques of G; we show that the above inequality is equivalent to the combinatorial inequality k1 (G) ! 1 k2 (G) ! 2 !1=2 k! (G) ! ! !1=! : These results complete and extend earlier results of Motzkin and Straus, Khadzhiivanov, Fisher and Ryan, and Petingi and Rodriguez. AMS classi…cation: Keywords: Maclaurin’s inequality, clique number, number of cliques Our graph-theoretic notation follows [1]; in particular, all graphs are de…ned on the vertex set f1; 2; : : : ; ng = [n] and G (n) stands for a graph with n vertices. We write ! (G) for the size of the maximal clique of G; Ks (G) for the set of s-cliques of G; and ks (G) for jKs (G)j. For any graph G = G (n) ; vector x = (x1; : : : ; xn) 2 R; and 1 s ! = ! (G) ; set fs (G;x) = X fxi1 : : : xis : fi1; : : : ; isg 2 Ks (G)g

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extension of Hardy Inequality on Weighted Sequence Spaces

Let and be a sequence with non-negative entries. If , denote by the infimum of those satisfying the following inequality: whenever . The purpose of this paper is to give an upper bound for the norm of operator T on weighted sequence spaces d(w,p) and lp(w) and also e(w,?). We considered this problem for certain matrix operators such as Norlund, Weighted mean, Ceasaro and Copson ma...

متن کامل

On a $k$-extension of the Nielsen's $beta$-Function

Motivated by the $k$-digamma function, we introduce a $k$-extension of the Nielsen's $beta$-function, and further study some properties and inequalities of the new function.

متن کامل

An Extension of a Geometric Inequality of Finite Point Set on a Sphere in the Constant Curvature Space

In this paper, we first prove an algebraic inequality, then use it obtain an extension of a geometirc inequality in the n -dimensional constant curvature space.

متن کامل

Operator Extensions of Hua’s Inequality

Abstract. We give an extension of Hua’s inequality in pre-Hilbert C∗-modules without using convexity or the classical Hua’s inequality. As a consequence, some known and new generalizations of this inequality are deduced. Providing a Jensen inequality in the content of Hilbert C∗-modules, another extension of Hua’s inequality is obtained. We also present an operator Hua’s inequality, which is eq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007